电力储能用锂离子电池标准化发展分析

王灿1* 张健2 黄天放2 王煜2 杨思源2

(1.国网湖南省电力有限公司电力科学研究院; 2.IEC国际标准促进中心(南京))

摘 要:完善的锂离子电池标准体系是锂离子电池储能电站安全运行、锂离子电池性能高效应用的重要保障。本文结合当前锂离子电池产业发展现状,从组成电池的关键材料、运输、生产检测等方面出发,梳理了储能用锂离子电池的标准并分析其中存在的不足,对锂离子电池标准化未来的工作重点和发展路径提出了建议。

关键词: 储能,锂离子电池,标准体系,安全

DOI编码: 10.3969/j.issn.1674-5698.2024.04.012

Analysis of Standardization Development of Lithium-ion Batteries for Electrical Power Storage

WANG Can^{1*} ZHANG Jian² HUANG Tian-fang² WANG Yu² YANG Si-yuan²
(1.Electric Power Research Institute, State Grid Hunan Electric Power Company Limited;
2.IEC Promotion Center (Nanjing))

Abstract: A comprehensive standards system for the lithium-ion battery is crucial to ensuring the safe operation of lithium-ion battery energy storage power stations and the efficient utilization of lithium-ion battery performance. This paper examines the current development status of the lithium-ion battery industry. It analyzes the standards for lithium-ion batteries used in energy storage and their shortcomings in the aspects of key materials, transportation, production, and battery testing, and provides suggestions for future work and the development path of lithium-ion battery standardization.

Keywords: energy storage, lithium-ion battery, standards system, safety

0 引言

目前, 锂离子电池储能电站在我国进入大规模商业化应用阶段^[1]。然而, 在锂离子电池储能规模化应用的过程中, 逐渐暴露出许多制约锂离子电池储能技术健康、可持续发展的短板。据统计, 自

2017年以来,全球已发生70余起储能火灾事故,其中大部分是由于锂离子电池引发的[2-4]。

标准化是产业发展的基础性工作,也是提升产品质量和安全的重要手段之一。明确和提升锂离子电池安全应用相关标准,已成为储能产业发展的基本需求。因此,为满足市场日益增长的需求,确保锂

作者简介: 王灿,通信作者,博士,高级工程师,研究方向为智能配电网、分布式能源。 张健,硕士,工程师,研究方向为国际标准、储能、电子设备热管理。 黄天放,博士,工程师,研究方向为国际标准、碳中和管理。 王煜,硕士,工程师,研究方向为国际标准、能源数字化。 杨思源,博士,工程师,研究方向为国际标准、碳中和管理。 离子电池在储能领域的安全使用,建立包含锂离子电池材料^[6,7]、单体、模块及管理系统以及电池的回收利用^[8,9]的锂离子电池标准体系势在必行^[5]。

本文基于当前锂离子电池产业的发展状况,对 比了储能用锂离子电池标准现状,揭示了我国储能 用锂离子电池现阶段标准的不足之处。针对这些不 足,提出了我国储能用锂离子电池标准未来的工作 重点和发展路径。为我国储能用锂离子电池产业的 健康、可持续发展提供参考。

1 标准化分析

电力储能用锂离子电池标准的制定与修订需要综合考虑系统性能、电池的性能参数、安全性能、运行维护与回收利用等方面,以确保电池的质量和安全性能,促进锂离子电池在电力储能领域的应用和发展。同时,标准制定过程中需要充分考虑国际和国内的标准现状和发展趋势,以及产业需求和市场需求,以制定符合实际需求的标准体系。

接下了本文将从锂离子电池材料标准、运输和 生产检测标准、运行维护与维修标准和回收利用标 准等四个方面逐一介绍电力储能用锂离子电池标 准的现状。

1.1 锂离子电池材料标准

锂离子电池在储能领域广泛应用,其中磷酸铁 锂电池占据主导地位。图1展示了锂离子电池的结构组成。其中,电池正负极和隔膜材料是电池的关 键组成部分,对电池的性能和安全性起着至关重 要的作用。这些材料需要具备高能量密度、良好的 电化学稳定性、卓越的安全性和低成本等特性,以 满足市场需求。因此,改进和完善锂离子电池的正 负极材料和隔膜材料标准显得尤为紧迫。

1.1.1 正极材料标准

国际标准层面, ISO/TC 333负责锂矿开采、浓缩、提取、分离和转化为含锂化合物/材料(包括氧化物、盐、金属、母材合金、锂离子电池材料等)领域的标准化工作, 具体包括术语、克服运输困难的交货技术条件、统一的检测和分析方法。其中, ISO/TC 333/WG 6主要负责锂正极材料的分析,该

技术委员会尚未发布标准,有14项正在制定的国际标准,主要集中于锂的分析方法、锂电池正极材料环境、电池包装和运输方式等基础项目。目前由中国承担该技术委员会的秘书,由中国有色金属工业标准计量质量研究所承担秘书处工作。该领域国际标准有较大缺口,我国是锂的主要生产国和主要消费国,建议我国相关企业尽早布局相关国际标准的研发工作。

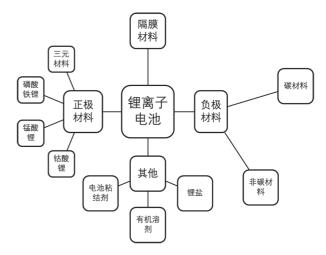


图1 锂离子电池结构组成

我国目前现有的锂离子电池正极材料相关国 家标准和行业标准,大部分由全国有色金属标准 化技术委员会组织牵头发布。截至2023年11月1日, 与锂离子电池正极材料相关的标准包括以下几项。 GB/T 23367.1-2009和GB/T 23367.2-2009分别规 定了钴酸锂化学分析方法的第1部分和第2部分,包 括钴量的测定(EDTA滴定法)和锂、镍、锰、镁、 铝、铁、钠、钙和铜量的测定(电感耦合等离子体原 子发射光谱法)。GB/T 26031-2010和GB/T 8766-2013分别涉及镍酸锂和单水氢氧化锂的标准。GB/ T 30835-2014规定了锂离子电池用炭复合磷酸 铁锂正极材料的标准。GB/T 20252-2014和GB/T 23365-2014分别涉及钴酸锂的标准以及其电化学 性能测试方法。GB/T 23366-2009规定了钴酸锂电 化学性能测试 首次放电比容量及首次充放电效率 测试方法。此外, GB/T 41704-2022、GB/T 42260-2022和GB/T 42161-2022分别规定了锂离子电池正 极材料检测方法,磷酸铁锂电化学性能测试的循

环寿命测试方法和首次放电比容量及首次充放电效率测试方法。最后,SJ/T 11794-2022和YS/T系列标准(YS/T 1030-2017、YS/T 1472.1-2021、YS/T 1472.3-2021、YS/T 1472.4-2021、YS/T 1472.6-2021)分别规定了锂离子电池正极材料游离锂的测试方法以及富锂锰基正极材料的化学分析方法,包括锰、锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定以及硫酸根含量的测定。

其中,两项国家标准GB/T 43092-2023《锂离子电池正极材料电化学性能测试 高温性能测试方法》和GB/T 23365-2023《钴酸锂电化学性能测试首次放电比容量及首次充放电效率测试方法》即将实施;3项行业标准20230123-T-610《锂离子电池正极材料-水分含量的测定-卡尔费休库伦法》、20221460-T-610《锂离子电池正极材料粉末电阻率测定》和20221726-T-610《钴酸锂化学分析方法第1部分: 钴含量的测定EDTA滴定法和电位滴定法》正在征求意见。

在锂离子电池正极进行制作时,为确保材料的充分锂化,往往在制作过程中会加入过量的锂。当残余锂过高时易导致电池浆料黏度大、电池存储性能变差。GB/T 5211.6-2020《颜料和体质颜料通用试验方法 第6部分:水悬浮液pH值的测定》和GB/T 41704-2022《锂离子电池正极材料检测方法 磁性异物含量和残余碱含量的测定》分别采用pH电位法和电位确定法测量电池正极的残余碱含量。

1.1.2 负极材料标准

负极材料关注的技术指标有:负极材料的密度、负极材料的比表面积、负极材料的pH值和水分含量、负极材料的主元素含量和杂质含量、负极材料的首次可逆比容量和首次效率等。

由于目前大规模进入实际应用的电池负极材料以石墨为主,因此目前国内锂电池负极材料的标准集中在石墨材料。截至2023年11月1日,涉及锂离子电池负极材料的相关标准包括GB/T 30836-2014,该标准规定了锂离子电池用钛酸锂及其炭复合负极材料的要求;GB/T 33827-2017,该标准规定了锂电池用纳米负极材料中磁性物质含量的测定方法;以及GB/T 24533-2019,该标准涵盖了锂离子电池石墨

类负极材料的相关规范。这些标准为负极材料的制备和性能提供了具体的技术要求和测试方法,有助于确保锂离子电池的可靠性和性能符合标准。

其中,在GB/T 24533-2019《锂离子电池石墨类 负极材料》中,石墨被细分为多个类型,包括天然 石墨、中间相碳微球人造石墨、针状焦人造石墨、石油焦人造石墨和复合石墨。每一类都经过评估,根据其电化学性能(首次充放电比容量和首次库仑效率)划分为不同的级别。而在每个级别内,根据材料的平均粒径(D50),进一步分为多个不同的品种。这一系统的分类和分级有助于确保使用在锂离子电池中的石墨类负极材料符合特定的质量和性能标准,从而提高电池的整体性能和安全性。

1.1.3 电池隔膜材料标准

隔膜的主要作用是隔离正负极,防止短路。隔膜材料在确保锂离子电池安全和性能方面具有重要作用,电池的容量、倍率、循环寿命、温度等性能与隔膜材料的特性和质量密切相关[12]。制定隔膜材料体系统一标准存在难度,因为其系列、规格及质量受厂商、工艺、厚度变化、表面涂层等因素影响较大。现有的隔膜标准主要规范了隔膜的物理特性,而缺少了工业界更关注的隔膜在电池中应用效果的相关标准,例如:用于锂离子电池的隔膜材料缺乏公认的测试标准。

国际标准层面, ISO/TC 24/SC 4负责对颗粒材料进行表征或尺寸分类的设备和方法的标准化,目前,该技术委员会已发布55项标准, 12项国际标准正在制定中。ISO/TC 61/SC 11负责塑料制品领域的标准化,包括通过聚合物粘合、密封、机械连接或焊接的连接技术。其中, ISO/TC 61/SC 11/WG 3的工作方向为塑料薄膜和片材。目前,电池隔膜材料相关的国际标准缺乏针对性,没有专门针对锂离子电池隔膜材料性的完整评价体系和国际标准。隔膜材料的质量对锂离子电池的安全稳定运行具有重大影响。我国相关企业在隔膜材料的生产上走在世界前例,建议针对标准空白,尽早布局相关国际标准的制定。

截至2023年11月1日,涉及电池隔膜材料的国家标准有: GB 1038-70《塑料薄膜透气性试验方

法》、GB 10006-88《塑料薄膜和薄片摩擦系数测 定方法》、GB 13022-91《塑料 薄膜拉伸性能试验 方法》、GB/T 6673-2001《塑料薄膜和薄片长度 和宽度的测定》、GB/T 6672-2001《塑料薄膜和薄 片厚度测定 机械测量法》、GB/T 12027-2004《塑 料 薄膜和薄片加热尺寸变化率试验方法》、GB/T 10403-2006《塑料 拉伸性能的测定 第3部分: 薄 膜和薄片的试验条件》、GB/T 21650.1-2008《压 汞法和气体吸附法测定固体材料孔径分布和孔隙 度 第1部分: 压汞法》、GB/T 13542.2-2009《电气 绝缘用薄膜 第2部分: 试验方法》、GB/T 26793-2011《库仑法微量水分测定仪》、GB/T 2792-2014 《胶黏带剥离强度的试验方法》、GB/T 31729-2015《塑料薄膜单位面积质量试验方法》、GB/T 31484-2015《电动汽车用动力蓄电池循环寿命要求 及试验方法》、GB/T 33052-2016《微孔功能薄膜 孔隙率测定方法十六烷吸收法》以及GB/T 36363-2018《锂离子电池用聚烯烃隔膜》等标准。其中, GB/T 36363-2018《锂离子电池用聚烯烃隔膜》中 针对电池隔膜的厚度、拉伸强度和断裂伸长率、穿 刺强度等特征进行了规定。一般来说,3C数码电池 的隔膜材料有向更薄的方向发展的趋势(7μm及以 下),动力电池的电池隔膜材料需要考虑机械安全 性, 一般在16~25µm之间。

同时,电池的隔膜材料需要考虑在高温环境下的性能。目前,厂家多使用GB/T 12027-2004《塑料薄膜和薄片加热尺寸变化率试验方法》测试电池

隔膜材料的热收缩情况[13]。

1.2 运输、生产要求与检测标准

除原材料外,电力储能用锂离子电池安全还涉及生产、运输和检测。在运输过程中存在潜在的极端温度、机械磕碰和湿损风险,因此锂离子电池在运输过程中应严格执行标准,避免事故发生。目前使用最广泛的锂电池安全运输标准UN38.3是联合国针对危险品运输专门制定的《联合国危险物品运输试验和标准手册》第3部分38.3款,该标准规范了高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过充电试验、强制放电试验等安全检测项目。

IEC标准中, IEC 62281-2004和IEC 63056: 2020对锂电池运输安全要求进行了规范, 前者侧重于运输过程中的检验方法和安全要求; 后者侧重于运输和安装过程中的电气绝缘检查与运输和安装过程中的短路保护。我国国家标准GB 21966-2008《锂原电池和蓄电池在运输中的安全要求》等同采标国际标准IEC 62281-2004。

锂离子电池的生产要求与检测应分为电池的电性能要求和安全要求两类。电性能要求方面,IEC 61427-1和IEC 61427-2中都对电池的容量测试、充放电效率测试、循环寿命测试、温度性能测试和高温储存性能测试进行了规定。IEC 61427-1是针对光伏离网用储能电池的标准,因此还包含了光照日循环、季节性周期对电池最大放电深度的影响、夏日高电荷状态的时期和冬季持续低电荷状态的时

次 1 · 6.7/最后用层周 1 · 6.76/两支水	
电池模块性能测试	电池簇性能测试
初始充放电能量	初始充放电能量试验
倍率充放电性能试验	外观检验
高温充放电性能试验	绝缘性能试验
低温充放电性能试验	
绝缘性能试验	
能量保持与能量恢复能力试验	
储存性能试验	
循环性能试验	
	电池模块性能测试 初始充放电能量 倍率充放电性能试验 高温充放电性能试验 低温充放电性能试验 维缘性能试验 维缘性能试验

表1 电力储能用锂离子电池测试要求

注: 表格信息截至2023年11月1日

期对电池寿命的影响。

GB/T 36276:2018规范了电力储能用锂离子电池的测试要求,包括电池单体、电池模块、电池簇的测试,具体测试要求见表1。GB/T 36276:2023将于2024年7月1日起实施。

安全可靠性又分为机械可靠性、环境可靠性和滥用电气可靠性。IEC SC21A制定的IEC 63056:2020对锂电池的安全性能提出了严格要求,对于火灾、爆裂/爆炸、电池电解液泄漏、机械变形或安装不正确导致的严重电气短路、持续排出易燃气体的排气、电池、模块、电池组和电池系统外壳破裂、内部组件暴露等问题进行了总结。IEC SC21A还制定了IEC 62619:2022来规范工业用二次锂电池的安全性能,将环境可靠性测试纳入其中,主要包括热冲击循环、热稳定性、起火、浸泡、过热、湿热、盐雾低气压等项目。

国内标准GBT 36276-2018针对锂离子电池单体安全性能的测试包含了短路、挤压、低气压和加热测试;针对锂离子电池模块体安全性能的测试包含了耐压性能试验、短路试验、挤压试验、跌落试验、热失控扩散试验;针对锂离子电池簇体的安全性能的测试包含了耐压性能试验。

目前,有关储能用锂离子电池运输、生产要求与检测的标准较为完善,基本能够覆盖锂离子电池的各种使用场景。但是,在国际标准和我国国家标准中都没有考虑储能电池中冷却系统的测试要求。随着储能电池能量密度的增加,单体电池在工作过程中的发热问题会逐渐严重,建议将电池的冷却系统作为储能系统的一部分纳入安全检测标准。

1.3 运行维护与检修标准

制定健全的电化学储能电站运行维护及检修标准是降低储能电站事故风险的重要措施。目前,国内外主要通过电池管理系统对电池组的电压、电流和外部温度等外部特征进行检测,并未做到真正检测电池内部情况。

随着传感技术和检测技术的进步,已有多种技术可用于电芯级检测^[10,11]。当前,已发布的运行维护与检修标准主要针对系统级别,未发现针对电芯级运行维护与检修的标准。

IEC 62933-5-4《EES系统的并网安全测试方法和程序-锂离子电池系统》正在编制中,该标准介绍了锂离子电池系统的EES系统并网安全测试方法和程序,包括电气、机械、爆炸、电磁场、火灾、温度、化学效应、辅助控制和通信系统故障、环境引起的危害以及BESS外壳和防护罩的IP等级测试方法。同时,IEC/TC 120和IEC/TC 69联合成立JWG 15,负责基于电动车的分布式储能系统运行维护与检修的相关标准。

GB/T 40090-2021储能电站运行维护规程对储能电站日常的运行维护和检修进行了规定,主要包括储能变流器、储能监控系统、液流电池储能系统、电池及电池管理系统、电池室或电池舱、消防系统和空调系统的检查要求。

针对电芯级运行维护和检测标准能够极大程 度避免储能电站热失控的风险。目前缺乏针对电池 单体在运行过程中的维护和检修标准,建议在未 来的标准规划中,加入针对电芯级健康状态的评估 和检查方法。

1.4 回收利用标准

废旧的锂离子电池如果不经过妥善处理,其中包含的金属和有害物质如果随意丢弃,可能渗入土壤和水源,对生态系统和人类健康产生不良影响。电池的回收利用是电池整个生命周期关键一环,通过回收,不但可以有效减少有害废弃物的排放,保护环境,还可以降低成本。目前,对于锂离子电池的回收利用主要有梯次利用和直接回收利用两种技术路线。

1.4.1 梯次利用

随着新能源汽车行业高速发展,市场即将迎来 大规模的动力电池退役潮。梯级利用是指对于电 池容量降低使得无法支持电动汽车工作,但本身没 有报废的电池,回收并用于储能等其他用途。电池 的梯级利用不仅能够有效解决电池产生的环保问 题,同时也有助于节约企业生产成本。

然而,动力电池梯次利用风险大,剔除风险 成本高,存在较大的使用风险。如:发生在北京的 2021年4月16日储能电站爆炸事故,就是由梯级利 用电池热失控所引发。 截至2023年11月1日,有5项国家标准与电池的梯次利用直接相关。(1) GB/T 34015-2017标准详细说明了车用动力电池回收利用中的余能检测要求,为确保电池在回收过程中的安全性和有效性提供了技术指导;(2) GB/T 38698.1-2020标准是车用动力电池回收利用管理规范的第一部分,涵盖了包装运输方面的规定,以确保电池在运输过程中的合规性和安全性;(3) GB/T 34015.2-2020标准详细规定了梯次利用的拆卸要求;(4) GB/T 34015.3-2021标准作为梯次利用的第三部分,详细规定了梯次利用的要求,为实现电池的多次有效利用提供了标准化的流程。(5) GB/T 34015.4-2021标准作为梯次利用的第四部分,规定了梯次利用产品的标识要求,以确保回收产品的可追溯性和标准化。

1.4.2 直接回收利用

电池梯次利用是未来退役锂离子电池利用的主流方向,但目前尚以试点项目为主。当下电池回收利用的主流做法是直接回收利用可回收高价值金属并降低对上游矿石的依赖,避免环境危害。未来电池回收处置和利用将是电池原料重要的来源渠道之一,针对锂电池回收利用的国际标准主要有IEC 63338和IEC 63330。

截至2023年11月1日,有5项国家标准与电池的回收利用直接相关。GB/T 34015-2017规范了车用动力电池回收利用中的余能检测,GB/T 33598-2017明确了拆解规范,GB/T 38698.1-2020是车用动力电池回收利用管理规范的第一部分,专注于包装运输。此外,GB/T 33598.2-2020和GB/T 33598.3-2021分别规定了车用动力电池回收利用中再生利用的材料回收要求和放电规范。

2 问题与建议

2.1 基础标准问题与建议

2.1.1 正极材料

(1) 老旧标准急需更新。部分标准制定时间过 长,如:国家标准GB/T 30835-2014《锂离子电池用 炭复合磷酸铁锂正极材料》距发布已超9年, GB/T 26031-2010《镍酸锂》已超过10年。应及时进行标准的修订工作,以满足相关技术更新指标。

(2)部分标准交叉重复。如: GB/T 41704-2022《锂离子电池正极材料检测方法 磁性异物和残余碱含量的测定》与SJ/T 11795-2022《锂离子电池电极材料中磁性异物含量测试方法》、SJ/T 11794-2022《锂离子电池正极材料游离锂的测试方法》标准中出现交叉重复的问题,不利于标准的使用。在标准修订的过程中,应加强沟通和协同,避免出现交叉重复问题。

2.1.2 负极材料

- (1)现有锂电池负极材料标准缺乏具体性和丰富性。现有标准的内容涵盖范围广泛,但对特定材料的关注不够集中、标准体系不够充足,建议针对不同类型的负极材料制定独立的标准。
- (2)缺乏锂电池负极材料测试的统一标准。目前,负极材料的测试标准存在一些定义模糊的参数。现有标准对负极材料的比容量和循环寿命等参数没有明确的指导要求,而这两个参数对于确定电极材料的实际应用性能非常重要。因此,建议未来的标准中明确这些参数。
- (3)丰富负极材料的标准体系、关注新型电池体系的标准制定。例如:对于新型的硅基负极材料,建议制定纳米硅碳和氧化亚硅两个独立的标准,以满足市场需求。

2.1.3 隔膜材料

国内大多数隔膜生产商存在生产工艺不稳定、精度低和产品一致性差等问题,这些问题导致锂电池的不稳定和安全隐患。为了解决这些问题,未来的隔膜标准制定需要考虑多个因素:首先,需要建立统一的测试方法以确保隔膜的质量控制和一致性,将厚度、孔隙率、耐温性、机械强度等指标纳入标准要求;其次,需要考虑指标的合理性和先进性,以引导隔膜生产商改善产品质量、规范生产,提升国际竞争力;最后,隔膜标准的制定还应考虑环境友好性和可持续发展的要求。

2.2 生产安全与运维标准问题与建议

(1)完善电芯级运行维护和检测标准。完善的电芯级运行维护和检测标准,能够显著降低储能电

站发生热失控的风险。目前,针对电芯级的维护和 检修标准尚不完善。建议在未来的标准规划中,重 视并完善电池系统健康状态的评估和检查方法,以 确保电池系统的稳定运行,降低潜在的安全风险。 完善的电芯级运行维护和检测标准不仅应包括电 池单体的日常检查和定期维护,还应涵盖电池系统 的健康状态评估、故障诊断与预测等方面。

- (2)更加严格和详细地将机械触发因素考虑 在内。由于储能电站的电池系统规模庞大,包含众 多电池单体,因此很容易受到机械碰撞,影响电池 系统的稳定运行,增加安全风险。例如:支撑结构 的老化可能会导致电池系统的跌落碰撞,安装和运 输过程中的震动和跌落,以及不可抗力引起的自然 灾害带来的机械损伤等。应该在标准体系中增加 相应的检测标准来应对这些情况,以保障电池系统 的安全和稳定运行。
- (3)由于储能电站的电池排布过于密集,位于不同位置的电池模块的热量累积情况存在差异,极易导致局部地区热量累积,从而引发热失控事件。此外,不同的海拔和气候也会导致相同的电池单体在运行过程中处于不同的工作状态。现有标准尚未对此进行规定,建议后续标准制定者考虑储能系统的设计和管理,并纳入其他多种因素,包括电池数量、排列方式、充放电倍率、热量管理以及地理环境影响等。
- (4) 更严格的充放电电压范围约束。由于储能 电站的容量逐渐增大,导致储能电站的电池系统愈 发庞大。这导致电池系统内部的各个电池单体之间 的不均一性被进一步放大,个别单体出现过充过 放的概率增大。因此需要更严格的充放电标准要 求,才能避免出现由于局部电池失效而导致的极端 事故发生。

2.3 回收利用标准问题与建议

2.3.1 梯次利用

(1)统一电池的结构和接口标准。目前,回收

的动力电池结构、参数和状态均有较大差异。动力 电池通常根据工业界特定车型定制,不同厂商的动力电池之间的结构、规格和参数差异较大,这使得 有效梯次利用这些电池具有较大挑战性。

- (2)完善退役电池状态检测标准。当前缺乏统一有效的评价退役电池性能和安全性的标准,极大地增加了的梯级利用的风险。
- (3)完善退役电池回收流通法规和梯级利用标准。当前对动力电池回收利用的各个环节协同监管力度不够,相关回收流通法规尚不完善,无法畅通回收渠道。

2.3.2 直接回收利用

与电池梯级利用的标准化不足类似,电池包结构不统一、拆解难度大以及缺乏有效的协同监管是直接回收利用过程中普遍遇到的问题。此外,目前废电池回收的重点主要是回收贵金属,而忽视了对其他相对廉价的组分,如:电解质和隔膜的适当回收。

同时,为进一步完善动力电池的回收进程,一方面应号召主要的电池厂商、电池使用企业与回收企业签署知识产权保密协议,或者建立联合运营模式,适当共享数据以提高电池回收利用效率;另一方面,通过规定统一电池的生产标准,建立动力电池追溯编码规则,使用统一电池编码,确保每一块动力电池有迹可循,可以进一步降低电池回收利用成本。

3 结语

本文结合当前锂离子电池产业的发展情况,梳理了储能用锂离子电池的标准体系,并分析了当前锂离子电池标准的不足,进而对锂电池正/负极材料、隔膜材料、生产运维、回收利用等方面的标准化工作提出了建议,以期提升锂离子电池的安全高效利用,支撑新型电力系统的建设。

参考文献

- [1] 中国能源研究会储能专委会, 中关村储能产业技术联盟. 白皮书: 储能白皮书2023[R/OL]. 2023.
- [2] Arizona Public Service. McMicken Battery Energy Storage System Event Technical Analysis and Recommendations[R]. America: Arizona Public Service, 2020.
- [3] 中国电力科学院研究有限公司. 北京集美大红门25MWh 直流光储充一体化电站项目事故分析[R]. 北京: 中国电力科学院研究有限公司, 2021.
- [4] 曹文炅, 雷博, 史尤杰, 等.韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547.
- [5] 刘玉玲, 李倩. 国外标准化建设规律及其启示[J]. 标准科学, 2021(04): 38-42.
- [6] 周军华, 褚赓, 陆浩, 等.锂离子电池负极材料标准解读[J]. 储能科学与技术, 2019, 8(1):215-223.
- [7] 梁裕铿, 张学梅, 万思成, 等锂离子电池正极材料标准现

- 状分析及整合建议[J]. 电池工业, 2022, 26(6): 321-324.
- [8] 张美娟, 王俪颖, 张瑞芳, 等 动力电池回收标准化建设的探索——以新能源科技服务业试点服务标准为例[J].中国质量监管, 2020 (12): 70-73.
- [9] 许守平, 胡娟, 汪奂伶, 等.电化学储能技术标准体系研究 [J]. 智能电网, 2016(9): 868-874.
- [10] 陈银, 肖如, 崔怡琳,等. 储能电站锂离子电池火灾早期 预警与抑制技术研究综述[J]. 电气工程学报, 2022.17(4): 72-87.
- [11] 褚维达,童杏林,冒燕,等. 锂离子电池内部植入光纤光栅 传感器存活实验研究[J]. 激光杂志, 2021, 42(8): 19–22.
- [12] 蒋皓静,刘卫,杨玉斋,等.消费型锂离子电池安全试验研究浅析[J]. 标准科学, 2021(6): 92-98.
- [13] 白耀宗, 王令, 苏相樵, 等. 锂离子电池隔膜材料标准解 读[J]. 储能科学与技术, 2018, 7(4): 750-757.

(上接第48页)

参考文献

- [1] 梁志文. 论算法排他权:破除算法偏见的路径选择[J]. 政治与法律, 2020(08):94-106.
- [2] 深圳市中级人民法院民事判决书(2021)粤03民初 3843 号民事判决书[Z].
- [3] 彭飞荣. 论算法作为商业秘密的侵权认定[J]. 浙江社会科学, 2023(06):47-56+157.
- [4] 柳经纬. 标准的类型划分及其私法效力[J]. 现代法学, 2020,42(02):157-170.
- [5] 衣俊霖. 数字孪生时代的法律与问责——通过技术标准透视算法黑箱[J]. 东方法学, 2021(04):77–92.
- [6] 夏庆锋. 网络合同中伪契约条款的排除[J]. 经贸法律评论, 2020(02):102-119.
- [7] 张凌寒. 算法自动化决策中的女性劳动者权益保障[J]. 妇女研究论丛, 2022(01):52-61.
- [8] 丁晓东. 基于信任的自动化决策: 算法解释权的原理反思与制度重构[J]. 中国法学, 2022(01):99-118.
- [9] 靳雨露. 算法披露的域外经验与启示[J]. 情报杂志, 2022, 41(07):91–99.
- [10] 田野. 平台用工算法规制的劳动法进路[J]. 当代法学,

- 2022,36(05):133-144.
- [11] 李安. 算法透明与商业秘密的冲突及协调[J]. 电子知识 产权, 2021(04):26-39.
- [12] 李晓辉. 算法商业秘密与算法正义[J]. 比较法研究, 2021 (03):105-121.
- [13] 苏宇. 算法解释制度的体系化构建[J]. 东方法学, 2024 (01):81-95.
- [14] 宋伟,刘子荷. 论算法黑箱的规制——基于算法解释视 角[J]. 南海法学, 2023,7(04):114-124.
- [15] 张韬略. 软件源代码强制披露制度建构的中国方案[J]. 东方法学, 2023(03):176–187.
- [16] 张欣. 算法影响评估制度的构建机理与中国方案[J]. 法商研究, 2021, 38(02):102–115.
- [17] 崔文波,张涛,马海群,等. 欧盟数据与算法安全治理: 特征与启示[J]. 信息资源管理学报, 2023,13(02):30-41.
- [18] Helen Nissenbaum. Privacy as contextual integrity[J]. Washington Law Review, 2004,79(1): 119–158.
- [19] 彭飞荣. 论算法创作中涉数据的著作权侵权风险及其 化解[J]. 法律适用, 2023(04):46-55.